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® Intent-Aware Prompting (IAP) was introduced for detecting mental manipulation in dialogues. It
improves the Theory of Mind (ToM) of LLMs via intent summarisation, thus improving model
performance on the task.

B Extensive experiments were conducted on the MentalManip dataset (Wang et al., 2024), which
demonstrates that IAP outperforms baseline methods and substantially reduces false negatives.

® Human evaluation was also performed on the intent summarisation process, which confirms the high
quality of the generated intents.
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Manipulation distorts thoughts and emotions
for personal gain, posing a serious concern in
human interactions.

LLMs can detect manipulation using prompt
engineering.

However, LLMs often miss manipulative
dialogues, with a false negative rate twice as
high as false positives.

Intent-Aware Prompting (IAP) enhances LLMs’
ability to analyse intents and identify
manipulative factors effectively.
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Methodology

B 0. Motivation

M In real life, manipulation is often undetected, which is
consistent with our initial experiments. However,
people with a strong Theory of Mind (ToM) are better

at recognising the little difference in others' intentions.
[ Well if I don't who will? }

You have no right to do this. ]

Therefore, we introduced intents to enhance LLMs’
ability to recognise mental manipulation.

They're happy like this. }

David, nobody's happy in a Poodle skirt and a
sweater set. You like all this don't you?
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Methodology

® 1. Intent Summarisation /@‘ — N
B The dialogue is seen as a continuous sequence of Well i T don't who wi -
speeches belonging to the two individuals. To 0 RS -
summarise each person's intent, a specialised prompt is
designed to guide LLMs to generate intent. Therefore, bttt
the model can consider the whole dialogue and \ Commten J
understand the intents of the two parties from the !
overall context. [ T —
| S b s e |

B In this process, the entire conversation is taken as input : =
rather than limited to a single speech by one party. This E’%?ﬁ'};;ﬁ;ﬁ“ﬁ”ﬁ:”i’:‘“‘
is because accurately extracting each person's intents e
requires an analysis based on the overall context rather © mrmm
than looking at one part of the speech.
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Methodology

. . . Ve ™
® 2. Manipulation Detection 0 - e
B Use the generated intent summary as input to detect Well i T dan't who wil -
manipulative behaviour in the conversation. A = . -
@ - They re happy like this.
manipulation detection prompt is designed to guide
. . . Dawid, 's hoppy wn a Peodle skirt o
LLMs to analyse the interactions between intended e Y
summaries. & “""i‘““" J
B The model outputs a binary result. If the detection er— ~
result is 0, then no manipulation behaviour is found in J:W.t";"’:‘iti"“:“f““ﬁ"'
. . . . J
the conversation; If the result is 1, there is 2 2
Intent of Person2:
manipulation in the conversation. A ST s S et N AN O T
\boh.v-v.- s not gerwuinely satistying 10 those involved o
@lmm&amm
Include Mental Menipulation
pra—

@ Manipulation Detection
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Results

Method | FN| FP| | Accuracy? Precision? Recallt FlweighieaT Flyacro T
Zero-Shot | 187 - 96 - 0.677 - 0813 - 0.691 - 0687 - 0649 -
Few-Shot 180 -37% 94 -2.1% | 0687 15% 0819 07% 0702 16% 0.69% 13% 0.659 1.5%

Zero-Shot CoT | 159 -15.0% 101 5.2% | 0.703 3.8% 03815 02% 0737 67% 0710 33% 0.670 3.2%
Intent-Aware | 130 -30.5% 110 14.6% | 0.726 72% 0812 -0.1% 0785 13.6% 0.728 6.0% 0.685 5.5%

Table 1: Result of detecting mental manipulation using GPT-4. Metrics with an upward arrow 1 indicate higher
values are better, while metrics with a downward arrow | indicate lower values are better. Using zero-shot as
comparison, darker green means better performance, and darker red means worse performance of the model.

Rating Category Percentage

Accurate 82%
Inaccurate 18%

Table 2: Percentage of intents rated as accurate and
inaccurate based on human evaluation.
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