

天津大学自然语言处理实验室

The Natural Language Processing Laboratory at Tianjin University

Towards Understanding Multi-Task Learning (Generalization) of LLMs via Detecting and Exploring Task-Specific Neurons

Yongqi Leng and Deyi Xiong* College of Intelligence and Computing, Tianjin University, Tianjin, China <u>lengyq@tju.edu.cn</u>

Yongqi Leng Master student @TJU

Deyi Xiong

Professor @TJU

Motivation

- 1. Previous studies have demonstrated the existence of language-specific neurons in multilingual large language models (MLLMs), which have been explored to investigate the multilingual learning mechanisms. In contrast, research into the multi-task learning mechanisms of LLMs remains limited.
- 2. We argue that multilingual learning is essentially a type of multi-task learning as well.

Research Questions

- Do task-specific neurons exist in LLMs?
- If they exist, can they facilitate the understanding of the multi task learning mechanisms in LLMs?
- Can we improve LLMs by exploring such neurons?

Can we extend neuronal analysis from multilingual learning to multi-task learning in LLMs?

Methodology

□ Identification

Employing gradient attribution method to estimate each neuron's relevance score for a given task. Neurons with the top k% relevance scores are identified as task-specific neurons.

$$\left|\mathcal{R}_{j}^{i}=\left|\Delta\mathcal{L}\left(oldsymbol{\omega}_{j}^{i}
ight)
ight|=\left|rac{\partial\mathcal{L}}{\partialoldsymbol{\omega}_{j}^{i}}oldsymbol{\omega}_{j}^{i}
ight|$$

Understanding

Quantitative Analysis: Empirical study on specialization and generalization with varying task-specific neuron proportions. Qualitative Analysis: Investigating generalization from the perspective of taskspecific neuron parameter similarity.

Exploration

Neuron-Level Continuous Fine-tuning Method (NCFT): During the continuous training over the task sequence, only the neuron-specific parameters of the current task are updated, while other parameters are frozen.

The 31st International Conference on Computational Linguistics

The 31st International Conference on Computational Linguistics

Experimental Setup

- Deactivation experiments.
- Fine-tuning experiments.

Model: Llama-2-7b Hyper-parameter: k = 10Dataset: classification and generation tasks

	Task	Dataset
CLS	Sentiment Classification Paraphrase Detection Natural Language Inference	AmazonFood, SST-2 QQP, Paws MNLI, GPTNLI
GEN	Summary Question Generation Data to Text	CNN/DailyMail, Xsum Sciqa, Tweetqa E2E, CommonGen

Summary of tasks and datasets.

Method \ Task-CLS	AmazonFood	SST-2	QQP	Paws	MNLI	GPTNLI	Avg.
Original	91.8	92.4	83.2	91.6	84.8	82.4	87.7
Deactivate-Random	90.6	91.2	79.8	87.6	80.5	79.3	84.8
Deactivate-Task	83.6	84.6	72.8	70.2	73.3	71.4	76.0
Method \ Task-GEN	Sciqa	Tweetqa	E2E	CommonGen	CNN/DailyMail	XSum	Avg.
Original	54.3	45.6	52.6	49.8	34.7	36.8	45.6
Deactivate-Random	50.8	41.3	48.7	47.3	31.3	34.4	42.3
Deactivate-Task	33.6	29.3	39.6	37.8	25.5	26.3	32.0

Performance of Llama-2-7b after task-specific neurons deactivation or without deactivation in each task. "Original" is the performance after fine-tuning with multi-task data without any neurons being deactivated.

Method \ Task-CLS	AmazonFood	SST-2	QQP	Paws	MNLI	GPTNLI	Avg.
Zero-shot	85.2	78.3	42.1	46.5	35.3	32.4	53.3
Train-Random	85.5	80.3	45.6	47.8	34.7	34.8	54.8
Train-Task	88.5	87.8	79.2	84.8	82.5	76.3	83.2
Method \ Task-GEN	Sciqa	Tweetqa	E2E	CommonGen	CNN/DailyMail	XSum	Avg.
Zero-shot	21.3	6.9	36.5	26.8	14.7	12.3	19.8
Train-Random	22.8	11.8	37.4	29.6	17.7	15.8	22.5
т · т 1	45.0	07.1	40 7	26.9	20.0	20.2	27.0

Performance of Llama-2-7b after fine-tuning task-specific neurons and under the zero-shot setting.

The 31st International Conference on Computational Linguistics

Experimental Setup

- We controlled the proportion of fine-tuned taskspecific neurons to investigate the trends in specialization and generalization.
- Results from the **in-domain (ID)** test set indicate **specialization** performance while results from the **out-of-domain (OOD)** test set indicate **generalization** performance.

Findings on Specialization

- When training all parameters of the model under the multi-task learning setup, inevitable interference among tasks occurs, thereby diminishing the efficacy of individual tasks to some degree.
- Our experiments show the efficacy of controlling the proportion of fine-tuned task-specific neurons as a promising strategy.

Group	Training Tasks	ID Test Tasks	OOD Test Tasks
(a)	Amazon, QQP, MNLI	Amazon, QQP, MNLI	<mark>SST-2, Paws, GPTNLI</mark> Tweetqa, CommonGen, Xsum
(b)	Sciqa, E2E, CNN	Sciqa, E2E, CNN	SST-2, Paws, GPTNLI Tweetqa, CommonGen, Xsum

Experimental groups for exploring generalization and specialization.

Results on classification and generation tasks after fine-tuning different proportions of task-specific neurons.

Group	10%	30%	50%	70%	100%
CLS-CLS	20.8	53.9	84.5	96.2	100
CLS-GEN	12.9	41.6	71.5	83.5	100
GEN-CLS	11.8	40.2	69.3	81.8	100
GEN-GEN	21.6	52.5	82.0	94.3	100

The overlap rate of task-specific neurons between training tasks and test tasks when controlling the proportion of task-specific neurons.

Findings on Generalization

- Task-specific neurons overlap rates are consistent with generalization performance.
- We argue that the overlap of task-specific neurons contributes to transfer learning between tasks, ultimately resulting in consistently higher generalization performance.

Overlap rate \ Percentage of trained neurons	10%	30%	50%
10%	80.2	81.4	81.8
20.8%	80.7	-	-
30%	81.1	82.0	82.3
50%	81.5	82.3	82.8
53.9%	-	82.5	-
70%	82.0	82.7	83.0
84.5%	_	-	83.1
100%	82.2	83.1	83.6

Results at different fine-tuned neuron proportions (10%, 30%, 50%) controlling the overlap rate under the **classification-classification** combination.

Overlap rate \ Percentage of trained neurons	10%	30%	50%
10%	31.6	32.1	32.3
21.6%	32.2	-	-
30%	32.5	32.9	33.5
50%	32.7	33.4	33.8
52.5%	-	<i>33</i> .8	-
70%	32.9	34.0	34.1
82.0%	-	-	34.9
100%	33.1	34.4	35.1

Results at different fine-tuned neuron proportions (10%, 30%, 50%) controlling the overlap rate under the **generation-generation** combination.

The 31st International Conference on Computational Linguistics

Experimental Setup

We calculate the correlation coefficients between the similarity of task-specific neuron parameters and the generalization performance.

Conclusion

These two show a positive correlation, reflecting the generalization between tasks from the perspective of parameter.

Testset	S	ST-2	I	Paws	GF	PTNLI	Ти	veetqa	Com	monGen	X	lsum
	r	p-value										
PCCs	0.87	0.02	0.92	0.01	0.79	0.05	0.96	0.00	0.96	0.00	0.97	0.00
SROCC	0.81	0.05	0.77	0.07	0.81	0.05	0.77	0.07	0.83	0.04	0.71	0.11

Correlation coefficients between the similarity of specific neuron parameters and generalization performance. PCCs denotes Pearson correlation coefficients and SROCC denotes Spearman correlation coefficients.

(Exploration) Mitigating Catastrophic Forgetting

The 31st International Conference on Computational Linguistics

Experimental Setup

- Model Llama-2-7b
- Dataset

Standard CL Benchmark, Large Number of Tasks Benchmark

• Metrics

(1) Performance on Continuous Learning (CL)

$$CL = \frac{1}{N} \sum_{i=1}^{N} a_{i,N}$$

(2) Forgetting Rate (FG)

$$\mathrm{FG}_{j} = \frac{1}{j-1} \sum_{i=1}^{j-1} \frac{a_{i,j}}{A_{i}} \times 100\%$$

Dataset	Class	Task Type	Domain
AGNews	4	Topic classification	News
Amazon	5	Sentiment anlysis	Amazon reviews
DBPedia	14	Topic classification	Wikipedia
Yahoo	10	Q&A	Yahoo Q&A

Details of the Standard CL Benchmark.

Method	Order-1	Order-2	Order-3	Avg.	Order-4	Order-5	Order-6	Avg.
SeqFT	46.4	47.3	47.5	47.1	35.6	34.8	33.5	34.6
SeqLoRA	53.6	54.8	53.1	53.8	47.9	49.5	45.7	47.7
EPI	48.1	48.0	49.0	48.4	42.3	41.8	43.6	42.6
O-LoRA	76.8	75.7	75.7	76.1	73.7	69.2	72.0	71.6
NCFT (Ours)	71.3	70.9	71.6	71.3	70.5	68.3	71.2	70.0
W-NCFT (Ours)	73.7	72.3	73.8	73.3	73.4	70.1	72.6	72.0
Per-Task FT	77.2	77.2	77.2	77.2	84.5	84.5	84.5	84.5

Results on two continual learning benchmarks. The average accuracy after training on the last task is reported.

Forgetting rates for eight stages on the Large Number of Tasks benchmark.

Dataset Class		Task Type	Domain		
Amazon	5	Sentiment anlysis	Amazon reviews		
DBPedia	14	Topic classification	Wikipedia		
Yahoo	10	Q&A	Yahoo Q&A		
AGNews	4	Topic classification	News		
MNLI	3	NLI	various		
QQP	2	Paragraph detection	Quora		
RTE	2	NLI	news, Wikipedia		
SST-2	2	Sentiment analysis	movie reviews		

Details of the simplified version Large Number of Tasks Benchmark.

Main Contributions

- We discover task-specific neurons in LLMs empirically through extensive experiments.
- We provide significant insights into generalization across tasks with our task-specific neuron analysis.
- We propose a neuron-level continuous learning fine-tuning method for mitigating catastrophic forgetting, and experiments demonstrate its effectiveness.

Final

The 31st International Conference on Computational Linguistics

Thanks to my supervisor and labmates

